采用功率集成模块设计出高能效、高可靠性的太阳能逆变器

2019-08-09 16:27


表2:推荐的 升压及逆变器模块

针对 DC-DC 升压模块,1个MPPT 通道可支持最大约25A光伏(PV) 输入(2个PV板并联),各模块都有不同的 MPPT 数、IGBT 额定电流、SiC 二极管额定值,应根据应用所需的 MPPT 数和每路 MPPT 的功率选用适当的模块和模块数。

对于1100V 最大直流母线的应用,需根据应用所需的逆变器功率等级选用相应的3电平 DC-AC 逆变器模块。对于较小功率的逆变器需求,如10kVA,安森美半导体提供把 a、b、c 三相集中到1个Q1封装的三合一方案。

此外,针对近期迅速增长的1500V光伏电站需求,安森美半导体还将推出1500V 三电平逆变器和升压模块,其1000V IGBT晶圆与市场主流的1200V晶圆相比,有较薄的衬底区,因此导通电阻更小,损耗明显降低。针对单相逆变器,安森美半导体将推出采用H6.5拓扑的模块,与广泛应用的 H 桥拓扑相比,大大降低共模电流以满足无隔离变压器并网的安规要求。考虑到未来家用增加电池储能的需求,在晶圆选取时考虑双向功率流动,即可向电网送电,也可从电网取电存储在电池里,功率因数为1或-1时都可高效运行。

在选择 PIM 时,首先应知晓应用需求,如额定功率和电压、是否需要升压模块、是采用3相还是单相、采用什么拓扑,然后和应用工程师一起计算所需的模块数量,并用仿真软件计算损耗和最高结温。

实用设计示例
图2是一台60kW 太阳能逆变器产品电路图。以1100V 三相逆变器为例,红色框图所示为1个直流升压模块,用于将较低的光伏板输入电压提升到较高的直流母线电容电压,蓝色框图所示为 TNPC 三电平逆变模块,实现直流到交流的能量转换。

图2:太阳能逆变器电路(1100 V三相逆变器)

此外,还用到一些无源器件如电解电容、薄膜电容、共模电感、AC 滤波电感、DC 滤波电感、AC 继电器等。电解电容支持直流母线电压的稳定,薄膜电容用于吸收 IGBT 开关时产生的尖峰电压,共模电感在共模回路中提供高阻抗,抑制共模干扰 EMI、共模损耗。

若要设计1个80kW 系统,假设选用4个Q0升压模块 NXH80B120H2Q0SG 和3个Q2Pack 逆变模块 NXH160T120L2Q2F2S1G,则每个 MPPT 的功率为:80/8 =10kW,PV 电流为: 10kW/600V=16.67A,每个逆变模块的功率为:80/3=26.67kW。然后,通过仿真软件输入如下系统条件参数,计算能效并评估 IGBT 和二极管的结温。

图3:80 kW 系统的设计示例

仿真结果显示,该设计方案的系统能效超过98%,损耗和热性能表现佳,因此是可行的。

门极驱动电路设计考量
IGBT 的导通、关断需要给cge电路充电放电。在光伏应用领域,控制信号和高压回路是需要隔离的。在布板时,应尽量将门极驱动电路放置在 PIM 模块附近,以减小驱动回路杂散电感,因为较高的杂散电感可能会引起门极电压振荡。在选取门极电阻值 Rg 时,需要在开关损耗和电压、电流应力之间进行折中。此外,设计人员需关注隔离芯片的共模瞬态抑制 (CMTI)参数。

总结
全球都在转向可再生能源如太阳能替代传统能源,以解决日益凸显的能源和环境问题。安森美半导体提供各种3电平逆变器模块和升压模块,采用优化的功率半导体器件和封装设计,在太阳能逆变器、UPS 和 ESS 系统中提供超过98%的能效和高可靠性,并提供各种与电源模块一起使用的门极驱动器以优化系统性能,同时辅以迅速、深入的技术支持,协助客户赢得商机和拓展业务。

关于安森美半导体

安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ON)致力于推动高能效电子的创新,使客户能够减少全球的能源使用。安森美半导体领先于供应基于半导体的方案,提供全面的高能效电源管理、模拟、传感器、逻辑、时序、互通互联、分立、系统单芯片(SoC)及定制器件阵容。公司的产品帮助工程师解决他们在汽车、通信、计算机、消费电子、工业、医疗、航空及国防应用的独特设计挑战。公司运营敏锐、可靠、世界一流的供应链及品质项目,一套强有力的守法和道德规范计划,及在北美、欧洲和亚太地区之关键市场运营包括制造厂、销售办事处及设计中心在内的业务网络。更多信息请访问http://www.onsemi.cn
• 请关注官方微博@安森美半导体

• 请关注官方微信。请搜微信号 onsemi-china 或扫描二维码

 

上一页12下一页

网友评论:

暂无评论
姓名:
关于安森美半导体 | 世纪电源网
技术支持:世纪电源网 引用或抄袭本站创意设计将追究相关法律责任   津ICP备10002348